DEPARTMENTOFAERONAUTICALENGINEERING

COURSECOVERAGESUMMARY

FOR

IIBTECH– ISEMESTER(2024-25)

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY

(SponsoredbyCMREducationalSociety) (AffiliatedtoJNTU,Hyderabad, Approvedby AICTE- AccreditedbyNBA&NAAC –'A'Grade –ISO9001:2008 Certified) Maisammaguda,Dhulapally(PostViaHakimpet),Secunderabad–500100

AIRCRAFTPRODUCTIONTECHNOLOGY (R20A2105) COURSECOVERAGESUMMARY

Unit	Title of	Topicsoftheunit	Name of	Chapter No.	PageNo.
	theunit		textbook		
Unit-1	Castingand Welding Techniques	Various molding processemployedin aircraft industry, Typesof patterns, Casting Process involved in Sand casting, die-casting, centrifugal casting, investment casting and casting casting	Manufacturing Engineering and Technologyby Kalpajikau- Addison Wesley	11	258-285
		WorkingPrinciples andequipmentused withemerging trends inarcwelding,gas welding,resistance welding,Laser welding,Soldering and brazingtechniques.		30	865- 880
Unit-2	Machining and Forming	Classificationof machiningprocesses, Typesofchips, working principles (withschematic diagramonly), types- lathe,shaper,milling machines,grinding (designationof grindingwheel), drillingm/c,CNC machining(overview of G-Codes.M-Codes).	Manufacturing Engineeringand Technologyby Kalpajikau - AddisonWesley	23	615-681

		operations-shearing, punching, super		16	381-421
		forminganddiffusion bonding.Bending, Automationinbend forminganddifferent operationsin bending likestretchforming,			
Unit-3	Unconven tional Machin ing	spinning,drawingetc. Principles of workingand applicationsof abrasivejet machining, ultrasonicmachining	Manufacturing Engineeringand Technology by	27	759-779
		electronbeam,EDM, EBM,andplasmaarc machining,Waterjet machining,Ionbeam machining.	AddisonWesley		
Unit-4	Heat Treatment andSurface Finishing	Heattreatment of Aluminum alloys, titaniumalloys,steels, casehardening. Corrosion prevention, protective treatmentfor aluminum alloys,steels, anodizing oftitaniumalloys, organiccoating,and thermalspray coatings.	Manufacturing Engineeringand Technologyby Kalpajikau - AddisonWesley	4	100-125
Unit-5	Jigs &Fixtur es	Jigs,fixtures,stagesof assembly,types andequipmentfor riveted joints,boltedjoints (only). AircraftTooling	Manufacturin gTechnology, Vol.II by Rao	15	15.1– 15.34

Conceptstypesof toolsusedinA/C industry.			
NDTandOther Inspection Techniques: comparisonofNDT& DT,processinvolved in Dye PenetrateTest,X-ray, andmagneticparticle andultrasonic	Manufacturin gTechnology, Vol.II by Rao	5	5.19–5.21

COURSECOVERAGESUMMARY FOR ELEMENTSOFAERONAUTICAL ENGINEERING

ELEMENTSOFAERONAUTICALENGINEERING (R20A2104) COURSECOVERAGESUMMARY

UnitN 0	TitleoftheUnit	TopicsoftheUnit	NameofThe TextBook	ChapterNo	Page No
I	Historyandfirst principles of flight	EvolutionofFlight-Hotair balloons, Airships Heavierthanair,Wrightflyerto commercial transportation Rotorcraft, missiles	Duchene,Flight Without Formulae	1	1-16
	ingit	Standard atmosphere, Understanding space-environment	Anders on, J.D.,	3	110- 125
		Laws ofgravitation, kepler's law, micro-gravity,rockets,spacecrafts and planetory environment	Introductionto Flight	8	679
		Basic forces on an aircraft, aerofoil nomenclature and types and airflow distribution, types of air-breathing engines-rocket engines-missiles,loadsonaircraft , Structural components and membersofanaircraft-schematics and purpose	Duchene, FlightWithout Formulae	4&5	53-70
П	Aerodynamics	Aerodynamicsanditsimportance, FlowregimesbasedonMach number,forcesandMoments, DerivationofLift,Dragand momentCoefficientswithpressure distribution,	Anderson, J.D., Introductionto Flight	4&5	134,2 90,29 4

		Variation of pressure distribution with respect toangle of attack Airfoil- nomenclatureandtypes.Control surfaces, High Lift devices, Spoilers, Propeller, Rotary wing aircraftconcepts,Compressible flow aerodynamics, shockand expansionwaves.	Anders on, J.D., Introducti on to Flight	4	290
Ш	Propulsion	Basicforcesonanaircraft,need for thrust, working of reciprocatingengines(2/4stroke variants)	V. Ganesan,	1&7	214
		Typesandworkingofair- breathing engines, rocket engines-typesandprinciples	Gas Turbines, Tata	7	220
		missiles and their types, Introduction to ramjet and scramjet engines	McGraw-H ill	17	216,5 81
IV	Aircraft Performa nce	Theroleanddesignmissionof anaircraft,Specificationofthe performancerequirementsand mission profile .Off-standard and design atmosphere. Measurementofairdata.Air data computers	Eshelby, M.E.,Aircra ftPerforman ce;	I&2	1-9 10-37
		Equations of motion for performance-the aircraft force system.Thepropulsiveforces–	AircraftPerformance& Design J.D.Anderson	4	191- 201
		the thrust production engines	Eshelby, M.E.,Aircra ftPerforman ce;	3	53-60
		power producing engines, variationofthrust,propulsive power and specific fuel consumptionwithaltitudeand flight speed	AircraftPerformance& Design J.D.Anderson	3	170- 174
	Aircraft Measureme nt Instrument	SensorsandInstrumentation-pitot static tube, primary flight instruments, principles of gyro and accelerometer	Aircraft Instruments by EHJ Pallet	4,5,12&14	50,11 6,298, 338

V	ation				
		Hydraulics and pneumatic systems, high lift devices, engine and navigation instruments.	AircraftInstrumentsby EHJ Pallet	5,12 &14	358,3 73

COURSECOVERAGESUMMARY FOR ENGINEERINGTHERMODYNAMICS

ENGINEERINGTHERMODYNAMICS(R20A2103) COURSE COVERAGE SUMMARY

Unit	Titleofthe	TopicsoftheUnit	Name of the	Chapter	Page
No.	Unit		References/Text	No.	No.
		System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic view points,Thermodynamic Equilibrium, State, Property, Process, Cycle - Quasi - static	Engineering Thermodynamics	1	12-20
UNIT-1	Introduction: BasicConcepts	Displacement & Other forms of Work, Heat, Point and Path functions, Zeroth Law of Thermodynamics - Concept of	Dy. P. K. Ndg	3	44-59 69-77
		Temperature-Firstlaw of Thermodynamics – applied to a process and system, Energy, specific heats, Enthalpy,SteadyFlow Energy Equation.		5	87-97
UNIT-2	Second Law of Thermodynamics andEntropy	Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements andtheirEquivalence/ Corollaries, PMM of Second kind, Reversible and Irreversible processes, Carnot's principle,	Engineering Thermodynamics By: P. K. Nag	6	117- 127
		Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality, Entropy, Principle of EntropyIncrease-		7	158- 175

		EnergyEquation,			
		Availability and		8	
		Irreversibility			
					220-
					225
		Perfect Gas Laws –			
		Fountion of State.			
		specific and Universal	Engineering		
		Gas constants -various	Thermodynamics	10	334-
UNIT-3	Gas Laws	Non-flow processes,	By: P. K. Nag		350
		properties, end states,	, 0		
		Heat and Work			
		Transfer, changes in			
		Internal Energy -			
		Throttling and Free			
		Expansion Processes -			
		Flowprocesses.Perfect			
		Gas Model, derivations			
		- Vander Waals			
		Equation of State -			
		variable specific Heats			
		- GasTables-Dryness			
		Fraction - Clausius -			
		ClapevronEquation			
		Property tables.			
		Mixtures of perfect			
		Gases-MoleFraction,			
		Mass fraction,			
		Gravimetric and			
	Thormodynamic	Volumetric Analysis -	Engineering		
UNIT-4	Relations	pressure Avogadro's	Thermodynamics	11	102-
	Relations	Laws of additive	By: P K Nag	11	411
		volumes - Mole	-,		
		fraction, Volume			
		fraction and partial			
		pressure, Equivalent			
		Gas const. and			
		Molecular Internal			
		Energy. Enthalpy,			
		specific heats and			
		Entropy of Mixture of			
		perfectGases.			
		Powercycles:Utto,	Enginooring		
					-
	Thermodynamic	Combustioncycles	Thermodynamics	13	523-

Description and representationonP-V	
and T-S diagram,	
Thermal Efficiency,	
Mean Effective	
Pressures on Air	
standard basis -	
comparison of Cycles.	
ApplicationofBrayton	
cycles in aviation.	

FLUID MECHANICS (R20A2101) COURSE COVERAGE SUMMARY

Unit No	Titleof theUnit	TopicsoftheUnit	NameofTheText Book	Chapt erNo	Page No
		Density,specificweight,specific gravity,		Ι	1-2
		surfacetension&capillarity		Ι	23
UNIT-I	Fluid	Newton'slawofviscosity, incompressible &compressiblefluid	FLUID MECHANICS	I	5
	Properties	Hydrostatic forceson	- &HYDRAULICMACHINE	II	35
		submerged bodies:	By		
		Pressure at a point,	by		
		Pascal'slaw,	Dr.R.K.BANSAL	II	35
		Pressurevariationwith		II	
		temperature and			37
		height, Center of			
		pressure on vertical			
		surfaces.			
		Manometers- simple and		II	
		differentialmanometers	_		43-53
		Inverted			52
		manometers, micro			22
		manometers,			
		Pressure gauges.			
		stream tube,		V	163
UNIT-II	Fluid Kinematics	Classificationofflows:steady, unsteady, uniform, non uniform, laminar,	FLUID MECHANICS &HYDRAULICMACHINE	V	163
		turbulent flows. One dimensional	S		
		&twodimensionalapproximation, 2-Dflowinwindtunnel	Ву		
		Continuity equations for 1-D and 2-D flows both compressible and incompressible,	Dr.R.K.BANSAL	V	165
		Velocitypotentialfunctionand stream function		V	181
		Surface & body	FLUID MECHANICS	VI	
UNIT-III	Fluid	forces,momentum	&HYDRAULICMACHINE		259
	Dynamics	equation, Euler	S		260
		equation,	Ву		200
		Bernoulli'sequation			261
		for flow along a	Dr.R.K.BANSAL		

		streamline.			
		Flowmeasurements:pressure, velocity and mass flow rate, viscosity.		VII	317-354
		venturimeterandorificemeter	-	VII	317-354
		Flowofthroughpipes:Darcy's		XI	465-483
		WeisbachEquation, majorand			
		minor losses.			
		Introductoryconceptsofboundary layer, Prandtl'sboundarylayerhypothesis, Boundary layer growth along a flat plate. Boundarylayerthickness		XIII	611-656
UNIT– IV	Boundary Layerflows	thickness (Displacement, Energy and Momentum), Von Karman's Momentum Integral Equation,	FLUID MECHANICS &HYDRAULICMACHINE S	XIII	613
		Drag forces due to	Бу	XIII	619
		laminarandturbulent	Dr R K ΒΔΝζΔΙ		
		boundary layer on	DIMADANSAL		
		flatplate.			
		Separation of		XIII	648
		boundary layer:			
		Adverse pressure			
		gradient and Sharp			
		bending/turning of			
		surface.Methodsof			
		preventing			
		separation of			
		boundary layer.			
	Dimensiona	Dimensional homogeneity, MethodsofDimensionalAnalysis,	FLUID MECHANICS	XII	561
UNIT-V	and Model Analysis	Buckingham'sπ-theorem, ModelAnalysis	&HYDRAULICMACHINE S	XII	565
		Similitude:Typesof	Ву	XII	579
		similarities,			
		Dimensionless	Dr.R.K.BANSAL		
		numbers,Similarity			
		laws.			

COURSECOVERAGESUMMARY FOR CAD/CAM

DEPARTMENTOFAERONAUTICALENGINEERING

CAD/CAM (R20A2106) COURSE COVERAGE

TITLEOFTHE UNIT	TOPICSOF THEUNIT	NAMEOFTHETEXT BOOK	CHAPTER No.	PAGENo.
UNIT-I Introduction Computer Graphics	Computers in Industrial Manufacturing,Productcycle, CAD / CAM Hardware,Basic structure.	CAD/CAM: PRINCIPLES AND APPLICATIONSBYPN Rao	I II III	1T015 21T045 53T060 61T070
	Rasterscangraphicscoordinate system, Databasestructureforgraphics modelling, Transformationofgeometry, 3D transformations,Clipping.			70T077 77T080 80T086
UNIT-II Geometric modelling	Requirements, geometric models, geometric Construction models, Curve representation methods, Surface representation methods, Modelling facilities desired.	CAD/CAM: PRINCIPLESAND APPLICATIONSBYPN Rao	IV	97T0122 123T0139 139T0151 164T0168
UNIT-III Numerical control	NC,NCmodes,NCelements,NC machinetools StructureofCNCmachinetools Features of Machining center turning center CNCPartProgramming fundamentals, Manualpart programming methods ComputerAidedPartProgramming.	CAD/CAM: PRINCIPLESAND APPLICATIONSBYPN Rao	IX X XII XIII	260T0272 274T0 290 316T0331 350T0 356 356T0360 361T0398
UNIT-IV Group Technology	Part family, coding and classification,Productionf lowanalysis, Advantagesandlimitations, ComputerAidedProcesses Planning,Retrievaltypeand Generativetype	CAD/CAM: PRINCIPLESAND APPLICATIONSBYPN Rao	XVIII	525T0532 536T0543 549T0554
UNIT-V Computer AidedQuality Control Computer integrated	Terminologyinqualitycontrol,the computerinQC,contactinspection methods, Noncontact inspection methods-optical, noncontact inspectionmethodsnon-optical, Computer aided testing, IntegrationofCAQCwithCAD/CAM. TypesofManufacturingsystems,	CAD/CAM: PRINCIPLESAND APPLICATIONSBYPN Rao	XXIII XXIV	694T0712 715T0729
manufacturing systems:	Machine tools and related equipment, Materialhandlingsystems,			

Computercontrol systems,	
systems,	
CIMSbenefits.	